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ABSTRACT
The Memory Pool System (MPS) is a very general, adaptable, flex-
ible, reliable, and efficient memory management system. It permits
the flexible combination of memory management techniques, sup-
porting manual and automatic memory management, in-line alloca-
tion, finalization, weakness, and multiple concurrent co-operating
incremental generational garbage collections. It also includes a li-
brary of memory pool classes implementing specialized memory
management policies.

The MPS represents about thirty person-years of development
effort. It contains many innovative techniques and abstractions
which have hitherto been kept secret. We are happy to announce
that Ravenbrook Limited is publishing the source code and doc-
umentation under an open source licence. This paper gives an
overview of the system.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques; D.3.3
[Programming Languages]: Language constructs and features—
dynamic storage management; D.3.4 [Programming Languages]:
Processors—memory management; D.4.2 [Operating Systems]:
Storage Management

General Terms
Algorithms, Design, Reliability

Keywords
Garbage collection, memory management, software engineering

1. INTRODUCTION
The Memory Pool System (MPS) is a flexible, extensible, adapt-

able, and robust memory management system, now available under
an open source licence from Ravenbrook Limited.

Between 1994 and 2001, Harlequin Limited (now Global Graph-
ics Software Limited) invested about thirty person-years of effort
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developing the MPS. It contains many innovative techniques and
abstractions which have hitherto been kept secret. In 1997, Richard
Brooksby, the manager and chief architect of the project, and Nicholas
Barnes, a senior developer, left Harlequin to form their own con-
sultancy company, Ravenbrook Limited, and in 2001, Ravenbrook
acquired the MPS technology from Global Graphics.

Our goals in going open source are that as many people as pos-
sible benefit from the hard work that the members of the (now de-
funct) Memory Management Group put in to the MPS design and
implementation. We also hope to develop the MPS further, through
commercial licensing and consultancy.

This paper gives an overview of the MPS, with particular em-
phasis on innovative things that it does.

2. BACKGROUND

2.1 History
The original Memory Management Group, set up in 1994, con-

sisted of Richard Brooksby and P. Tucker Withington. Richard had
previously worked in the ML Group and implemented the MLWorksTM

memory manager and garbage collector. Tucker joined from the ail-
ing Symbolics Inc, where he maintained the Lisp Machine’s mem-
ory systems.

The initial brief of the group was to provide a memory manager
for Harlequin’s new Dylan system. Harlequin was also interested in
a broader set of memory management products, and in absorbing
the memory managers of other products, such as ScriptWorksTM

(the high-end PostScript R
�

language compatible raster image pro-
cessor), LispWorksTM, and MLWorksTM. Initial prototyping and
design work concentrated on a flexible memory management frame-
work which would meet Dylan’s requirements but also be adaptable
to other projects, and form a stand-alone product.

Richard’s concerns about the subtlety of a generic memory man-
agement interface, the pain of debugging memory managers, and
the complexity of the Dylan implementation, led him to push for a
fairly formal requirements specification. This set the tone for the
group’s operations, and led to extensive use of formal software en-
gineering techniques such as inspections. At its height, the group
was operating a Capability Maturity Model level 3 process [12]. As
a result, the MPS was very robust and had a very low defect rate.
This enabled the group to concentrate on development.

The Memory Management Group collaborated with the Labora-
tory for the Foundations of Computer Science at Edinburgh Uni-
versity, with the goal of formally verifying some of the algorithms
[16].

The MPS was incorporated into the run-time system of Harlequin’s
DylanWorksTM compiler and development environment (now avail-



able as Functional Developer from Functional Objects, Inc). Later,
it replaced the highly optimized memory manager in Harlequin’s
ScriptWorksTM, improving performance and reliability to this day
as part of Global Graphics’ Harlequin RIP R

�
.

2.2 Requirements
The MPS had a fairly large and complex set of requirements

from the beginning. The Harlequin Dylan project was formed from
highly experienced Lisp system developers who knew what they
wanted [10]. The requirements of ScriptWorksTM were even more
complex [8]. On top of this, we were always striving to anticipate
future requirements.

This section describes the overall architectural requirements that
guided all aspects of the design [11]:

Adaptability The MPS has to be easy to modify to meet new
requirements. This makes the MPS suitable for new applica-
tions and ensures it has long and useful life.

Flexibility The MPS must fit into a number of different products
and meet differing requirements in diverse environments. It
must do this with as little modification as possible, so that
it can be deployed at low cost. Flexibility gives the MPS
broad application, and reduces the need to maintain special
versions of the MPS for different clients. Code re-use also
leads to robustness through use testing.

Reliability Memory management defects are very costly. In de-
velopment they are difficult to find and fix, and once de-
ployed they are virtually impossible to reproduce. The MPS
may be shipped to third and fourth parties, further increasing
the cost of a defect. Reliability is therefore very important to
the viability of the MPS.

Efficiency Efficiency will always be required by clients; after all,
memory management is about the efficient utilization of re-
sources to meet requirements. However, the tradeoffs be-
tween those requirements will differ from application to ap-
plication, hence the need for adaptability and flexibility. A
generally efficient system will make it easier to meet these
requirements.

3. ARCHITECTURE
The MPS consists of three main parts:

1. the Memory Pool Manager (MPM)

2. the pool classes, and

3. the arena classes.

See Figure 1.
Each pool class may be instantiated zero or more times, creating

a pool. A pool contains memory allocated for the client program.
The memory is managed according to the memory management
policy implemented by its pool class. For example, a pool class
may implement a type of garbage collection, or manage a partic-
ular kind of object efficiently. Each pool can be instantiated with
different parameters, creating variations on the policy.

The arena classes implement large-scale memory layout. Pools
allocate tracts of memory from the arena in which they manage
client data. Some arena classes use virtual memory techniques to
give control over the addresses of objects, in order to make mapping
from objects to other information very efficient (critically, whether

an object is not white). Other arena classes work in real memory
machines, such as printer controllers.

The MPM co-ordinates the activities of the pools, interfaces with
the client, and provides abstractions on which the memory manage-
ment policies in the pools are implemented.

This architecture gives the MPS flexibility, its primary require-
ment, by allowing an application of the memory manager to com-
bine specialized behaviour implemented by pool classes in flexi-
ble configurations. It also contributes to adaptability because pool
classes are less effort to implement than a complete new memory
manager for each new application. Reliability is enhanced by the
fact that the MPM code can be mature code even in new appli-
cations. However, efficiency is reduced by the extra layer of the
MPM between the client code and the memory management pol-
icy. This problem is alleviated by careful critical path analysis and
optimization of the MPM, and by providing abstractions that allow
the MPM to cache critical information.

4. IMPLEMENTATION
The MPS is about 62 Kloc of extremely portable ISO standard C

[1]. Except for a few well-defined interface modules, it is freestand-
ing (doesn’t depend on external libraries1). We have been known
to port to a new operating system in less than an hour.

The code is written to strict standards. It is heavily asserted, with
checks on important and subtle invariants. Every data structure
has a run-time type signature, and associated consistency check-
ing routines which are called frequently when the MPS is compiled
in “cool” mode2. Much of the code has been put through formal
code inspection (at 10 lines/minute or less) by between four and
six experienced memory management developers [15]. It was de-
veloped by a team working at approximately Capability Maturity
Model level 3 [CMMI1.02]. As a result, it is extremely robust, and
has a very low defect rate.

The MPS is designed to work efficiently with threads, but is
not currently multi-threaded. Fast allocation is achieved by a non-
locking in-line allocation mechanism (see section 5.2).

5. KEY FEATURES AND ATTRIBUTES

5.1 Flexible combination of memory manage-
ment techniques

The most important feature of the MPS is the ability to com-
bine memory management policies efficiently. In particular, mul-
tiple instances of differing garbage collection techniques can be
combined. In the Harlequin Dylan system, for example, a mostly-
copying main pool is combined with a mark-sweep pool for han-
dling weak key hash-tables, a manually-managed pool containing
guardians implementing user-level weakness and finalization, and a
mark-sweep pool for leaf objects. The same codebase is used with
a very different configuration of pools in the Harlequin R

�
RIP3.

An overview of the abstractions that allow flexible combination
can be found in section 6.
�
Ironically, a lot of clever design went into the interfaces (MPM

and the plinth) to make robust and efficient binary interfaces for a
closed-source MPS library.�
The MPS can be compiled with various flags to give different va-

rieties. The “cool” varieties are intended for debugging and testing.
The “hot” varieties are for delivery. Some level of internal consis-
tency checking is present in all varieties.�
The details of the Harlequin R

�
RIP configuration and the the RIP-

specific pool class implementations are confidential, and not avail-
able under an open source licence.
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Figure 1: The MPS Architecture.

5.2 Efficient in-line allocation
The MPS achieves high-speed multi-threaded allocation using

the abstraction of allocation points backed by allocation buffers [9].
The allocation point protocol also allows garbage collection to take
place without explicit synchronization with the mutator threads.

An allocation point (AP) consists of three pointers: init, al-
loc, and limit. Before allocation, init is equal to alloc. The
thread owning the AP reserves a block by increasing alloc by the
size of the object. If the result exceeds limit, it calls the MPS to
complete the reservation, but otherwise it can initialize the object at
init. Once the object is initialized, the thread commits it, by set-
ting init equal to alloc, checking to see if limit is zero, and
calling the MPS if it is. At this point the MPS may return a flag in-
dicating that the object has been invalidated, and must be allocated
and initialized again. Both the reserve and commit operations take
very few instructions, and can be inlined.

The exact implementation of the AP protocol depends on the
pool from which the thread is allocating. Some pools may guar-
antee that an object is never invalidated, for example, and so the
commit check can be omitted. Most pools implement APs by back-
ing them with allocation buffers, fairly large contiguous blocks
of memory from which they can allocate without ever calling the
MPS.

The AP protocol allows in-line allocation of formatted objects
(see section 5.5) containing references that need tracing by a garbage
collection. The MPS knows that objects up to init have been
initialized and can therefore be scanned. It also knows that an ob-
ject that is half-initialized (somewhere between reserve and com-
mit) when a flip occurs (see section 6.7) can’t be scanned, and may
therefore contain bad references, that is, references which have not
been fixed (see section 6.5). Hence the commit check, and the re-
allocation protocol. The chances of a flip occurring between a re-
serve and commit are very low, and re-allocation rarely happens in

practice.
The AP protocol relies on atomic ordered access to words in

memory, and some care must be taken to prevent some processors
from re-ordering memory accesses.

The design of allocation buffers was inspired by the Symbolics
Lisp Machine allocator, which supports a similar protocol in mi-
crocode, but requires atomic initialization of objects.

5.3 A library of pool classes

5.3.1 A: Allocate only
A simple pool class which only supports in-line allocation. This

is useful when objects need to be allocated rapidly then deleted
together (by destroying the pool). Allocation is very fast. This pool
is not currently in the open sources.

5.3.2 AMC : Automatic Mostly Copying
The most complex and well-developed pool class, this was orig-

inally designed as the main pool for Harlequin’s implementation
of Dylan, but is a general purpose moving pool. It implements a
generational mostly-copying algorithm [5].

5.3.3 AMS : Automatic Mark Sweep
This is the general-purpose non-moving counterpart of AMC.

Not generational.

5.3.4 AWL : Automatic Weak Linked
A specialized pool originally designed to support weak key hash

tables in Dylan. In a weak key hash table, the value is nulled out
when the key dies (see section 6.4). The pool implements mark
sweep collection on its contents.

5.3.5 LO : Leaf Object



This pool stores leaf objects (objects not containing references).
It was originally designed for use with the Dylan foreign function
interface (FFI), guaranteeing that the objects will not be protected
by the MPS under a hardware read or write barrier, because inter-
actions with foreign code would be unpredictable.

5.3.6 MFS : Manual Fixed Small
A simple pool which allocates objects of fixed (regular) small

(much less than a page) size, though each instance of the pool can
hold a different size. Not garbage collected. Used internally to the
MPS for the management of some of its own dynamic structures.

5.3.7 MRG : Manual Rank Guardian
This pool is used internally in the MPS to implement user-level

finalization of objects in other pools. Some techniques from [14]
were used in its design.

5.3.8 MV : Manual Variable
A manually managed pool for variable sized objects. This is the

pool class used internally by the MPS as the control pool for many
MPS data structures. It is designed to be very robust, and, like
many other MPS pools, keeps all of its data structures away from
the objects it manages. It is first-fit, with the usual eager coalescing.

5.3.9 MV2 : Manual Variable 2
An unfinished manually managed pool for variable sized objects,

using bitmaps and crossing maps. Designed for high-performance
freelists with subtle theory of block reuse. MVFF is bascially a
light version of the same that just uses the high performance freelist
and first fit.

5.3.10 MVFF : Manual Variable First Fit
A general-purpose manually-managed pool for variable sized ob-

jects, implementing address-ordered first-fit, but with in-line worst-
fit allocation. It is optimized for high performance when there is
frequent deallocation in various patterns.

5.4 Support for location dependency
Some data structures and algorithms use the address of an ob-

ject. This can be a problem if the memory manager moves objects
around. The MPS provides an abstraction called location depen-
dency (LD) which allows client code to depend on the locations of
moving objects.

The design of LDs was inspired by the Symbolics Lisp Machine
which has hardware support for something similar, and an evolution
of an algorithm developed by P. Tucker Withington for simulating
the LispM hardware on stock hardware when writing the Lisp Ma-
chine emulator.

5.5 Client object formats
Garbage collectors always have some information about the for-

mat of the objects they manage. For example, a non-conservative
garbage collector must be able to find and interpret references within
the objects it manages. A garbage collector must be able to com-
pute the size of an object given a reference to that object. If the
object allocation is entirely handled by the client (as in the MPS;
see section 5.2), the size information is encoded somehow in the
object format.

This format information is usually entangled deeply in the source
code of the collector, for instance in the innermost scan/fix loop.
Adapting such a collector to a new object format may be difficult
and may introduce some very complex defects.

The MPS includes no object format information; rather it allows
each MPS client to specify one or more object formats, by provid-
ing a small set of methods which operate on pieces of memory.

When a client creates a pool of a formatted pool class, it speci-
fies an object format for the objects allocated in that pool. The pool
class is then able to invoke these methods as necessary to perform
format-specific operations. In particular, the scan and fix methods
of the pool class interact closely with the format methods (see sec-
tion 6.5).

Different pool classes will use formats in different ways. For
example, a copying garbage-collected pool may need methods to:

� calculate the size of an object;
� copy an object;
� scan an object;
� replace an object with a “broken heart” (containing a for-

warding pointer).

A non-moving mark-and-sweep pool, on the other hand, may
only need methods to calculate the size of an object and to scan an
object.

The format methods include the following[4]:

skip Skips a pointer over an object.

copy Makes a copy of the object in another location. Objects are
usually copied byte by byte, but some uncommon object for-
mats might contain relative pointers that have to be fixed up
when the object is moved.

pad Fills a block of memory with a dummy object. This should
work just like a real object in all the other methods, but con-
tain no data. This method is used by the MPS to fill in odd
corners that need to be scannable.

fwd Replaces an object with a “broken heart” of the same size,
containing a forwarding pointer. It is used when the MPS
has moved an object to a new location in memory.

isfwd distinguishes between a broken heart and a real object, re-
turning the forwarding pointer of a broken heart.

scan locates all references in a contiguous set of objects and tells
the MPS where they are. The objects may include dummy
objects and broken hearts.

align is an integer value defining the alignment of objects allo-
cated with this format.

Note that a single client may use more than one object format,
even within the same pool class. A client may choose to have many
formatted pools, specializing format methods to the kind of object
which is allocated within a given pool.

5.6 Multiple arenas
Memory managers, and garbage collectors especially, usually

work well with exactly one client. They take over the whole mem-
ory infrastructure of a process and provide a single instance of an
abstraction to a single client. For instance, they often assume that
they have total control over memory protection and memory map-
pings.

In today’s modular software world, such an approach has obvi-
ous drawbacks. How do you link together two components, possi-
bly written in different languages, with different memory manage-
ment infrastructures?



The design of the MPS avoids such assumptions about the en-
vironment in which it runs. It abstracts its entire interface with a
client into an arena object. There is no “global state” of the MPS
(apart from the set of arenas). Separate arenas are managed entirely
independently. All MPS operations (e.g., allocation, pool creation,
garbage collection) are per-arena.

There is more than one way to provide the underlying memory
which the MPS manages: it may be a dynamic amount obtained
from a virtual memory subsystem, or it may be a fixed amount
of client memory (for instance, in an embedded controller or an
application which needs a constant memory footprint). These are
implemented as distinct arena classes. Note that the MPS may
manage arenas from more than one arena class simultaneously.

For testing purposes, there is also an arena class which obtains
memory from the C standard library malloc function.

6. THE TRACER
The Tracer co-ordinates the garbage collection of memory pools.
The Tracer is designed to drive multiple simultaneous garbage

collection processes, known as traces, and therefore allows several
garbage collections to be running simultaneously on the same heap.
Each trace is concerned with refining a reference partition (section
6.1) using a five-phase garbage collection algorithm that allows for
incremental generational non-moving write-barrier type collection
(possibly with ambiguous references) combined with incremental
generational moving read-barrier type collection, while simulta-
neously maintaining generational and inter-pool remembered sets.
Furthermore, the Tracer co-ordinates garbage collection across pools.
A trace can include any set of pools. The Tracer knows nothing of
the details of the objects allocated in the pools.

This section describes the abstractions used to design such a gen-
eral system. The definitions are rather abstract and mathematical,
but lead to some very practical bit twiddling. The current MPS im-
plementation doesn’t make full use of these abstractions. Nonethe-
less, they were critical in ensuring the that the MPS algorithms were
correct. It is our hope that they will be of great use to future design-
ers of garbage collection algorithms.

6.1 Reference Partitions
The MPS was originally based on a theory of reference parti-

tions, which we developed to generalize the familiar idea of “tri-
colour marking” [13]. Subsequently the MPS was refined to in-
clude more varied barrier techniques[19], but we present the basic
theory here to give a flavour of the MPS.

A reference partition is a colouring of the nodes in a directed
graph of objects. Every object is either “black”, “grey”, or “white”
in any reference partition. A partition ���	��
����� of a directed
graph is a reference partition if and only if there are no nodes in
� which have a reference to any node in  , that is, nothing black
can refer to anything white.

An initial partition is one with no black nodes: ������
����� . All
initial partitions are trivially reference partitions.

A final partition is one with no grey nodes: ���	�������� .
For a predicate � , we say some reference partition ������
�����

is a reference partition with respect to � if and only if everything
with � is in  , that is, �������������  .

If we can determine a final reference partition such that the client
process roots are contained in � then  is unreachable by the
mutator, cannot affect future computation, and can be reclaimed.

Tracing is a way of finding final reference partitions by refine-
ment. We start out by defining an initial reference partition with
respect to a “condemned” property, such as being a member of a
generation. We then move reachable objects from 
 to � , preserv-

ing the reference partition invariant by moving objects from  to

 where necessary, until we end up with a final reference partition.

The key observation here is that any number of partitions can
exist for a graph, and so there’s no theoretical reason that multiple
garbage collections can’t happen simultaneously.

A second important observation is that because reference parti-
tions can be defined for any property, one could have, for example,
a reference partition with respect to a certain size of objects. The
MPS uses the reference partition abstraction to implement some-
thing equivalent to “remembered sets” [20] by maintaining refer-
ence partitions with respect to areas of address space called zones.
This is described further in section 6.2.

Reference partitions can be usefully combined. If � and ! are
reference partitions, then we can define reference partitions �#"$!
as ���&%�'��)(*�+�,
-%�".
-(/�102�,3%."�3(4����3%�".2(5� and �3'6!
as ��� % "7� ( �+�,
 % "7
 ( �80#��� % "$� ( ���� % '9 ( � .

6.2 Induced graphs
Given a directed graph and an equivalence relation on the nodes

we can define an equivalence-class induced graph whose nodes are
the equivalence classes. If there’s an edge between two nodes in the
graph, then there’s an edge between the equivalence classes in the
induced graph. We can define reference partitions on the induced
graph, and do refinement on those partitions in just the same way as
for the original graph. We can garbage collect the induced graph.

In fact, you can think of conventional garbage collectors as do-
ing this all the time. Consider a language in which an object may
have sub-objects (inlined within its representation in memory), and
an object may refer directly to sub-objects of other objects. You
can represent the sub-object relationship with implicit references
between sub-objects. Then there is a graph on the sub-objects, in-
cluding both the usual references and these implicit references as
edges. The graph of objects we normally discuss is induced from
this graph, the equivalence classes being the sets of sub-objects of
separate objects. Theoretically we could garbage collect individual
sub-objects by tracing this lower level graph, and reclaim the mem-
ory occupied by parts of objects! The MPS is general enough to
support this, though we have not implemented a pool class which
does it.

Given two equivalence relations : and ; on a directed graph 
 ,
we can define an equivalence-class relation induced by : and ; ,
which is a binary relation between the equivalence classes of : and
the equivalence classes of ; . ��:.��������;<��=>�?� is in the relation if the
graph includes an edge from � to = in the graph.

The MPS divides address space into large areas called zones. The
set of zones is called @ . The number of zones is equal to the number
of bits in the target machine word, so any set of zones (subset of
@ ) can be represented by a word. Given an equivalence relation
: , the equivalence-class relation induced by : and @ is called the
summary of each equivalence class of : . Roughly speaking, it
summarizes the set of zones to which that class refers. This is a
BIBOP-like technique adapted from the Symbolics Lisp Machine’s
hardware assisted garbage collection [18].

The Tracer groups objects into segments, and maintains a con-
servative approximation of the summary of each segment. By do-
ing this, it is maintaining a reference partition with respect to each
zone. Segments which don’t have a zone in their summary are
“black” for that zone, segments which do are “grey” if they aren’t in
the zone, and “white” if they are. The Tracer uses this information
to refine traces during phase 1 of collection; see section 6.7.

6.3 Segments
The Tracer doesn’t deal with individual client program objects.



All details of object allocation and format is delegated to the pool.
The Tracer deals with areas of memory defined by pool classes
called segments. The segment descriptor contains these fields im-
portant to tracing:

white The set of traces for which the segment is white. A superset
of the union of the trace whiteness of all the objects in the
segment. More precisely, if a trace is not in the set, then the
segment doesn’t contain white objects for that trace.

grey The set of traces for which the segment is grey. (See “white”
above.)

summary A summary (see section 6.2) of all the references in the
segment.

ranks A superset of the ranks of all the references in the segment
(see section 6.4).

In addition, the Tracer maintains a set of traces for which the
mutator is grey (and assumes it’s black for all other traces), and
a summary for the mutator. The mutator is a graph node which
consists of the processor registers, and any references in memory
that can’t be protected against transfers to and from the registers.
This is not usually the same as the root set.

Memory barriers4 are used to preserve the reference partitions
represented by the traces in the face of mutation by the client pro-
cess. These invariants are maintained by the MPS at all times:
� Any segment whose grey trace set is not a subset of the mu-

tator’s grey trace set is protected from reads by the mutator.
This prevents the mutator from reading a reference to a white
object when the mutator is black. If the mutator reads the
segment, the MPS catches the memory exception and scans
the segment to turn it black for all traces in the difference be-
tween the sets. (An theoretical alternative would be to “un-
flip”, making the mutator grey for the union of the sets, but
this would seriously set back the progress of a trace.)

� Any segment whose grey trace set is not a superset of the
mutator’s grey trace set is protected from writes by the mu-
tator. This prevents the mutator from writing a reference to a
white object into a black object. If the mutator writes to the
segment, the MPS catches the memory exception and makes
the segment grey for the union of the sets. (An alternative
would be to “flip”, making the mutator black for the differ-
ence between the sets, but this would generally be premature,
pushing the colletion’s progress along too fast.)

� Any segment which has a summary which is not a superset of
the mutator’s summary is protected from writes by the muta-
tor5. If the mutator writes to the segment, the MPS catches
the memory exception and unions the summary with the mu-
tator’s summary, removing the protection. Abstractly, this is
the same invariant as for the grey trace set (see above), be-
cause the summaries represent reference partitions with re-
spect to zones. The barrier prevents the mutator writing a
pointer to a white object (the zone) into a black object (which
doesn’t refer to the zone).

A
The MPS uses memory protection (hardware memory barrier) for

this, but could easily be adapted to a software barrier (if we have
control over the compiler). The MPS abstraction of memory barri-
ers distinguishes between read and write barriers, even if the spe-
cific environment cannot.B

The current implementation of the MPS assumes that the muta-
tor has a universal summary. In other words, it assumes that the
mutator could refer to any zone. This could be improved.

6.4 Reference Ranks for Ambiguity, Exact-
ness, Weakness, and Finalization

The rank of a reference controls the order in which references
are traced while refining the reference partition. All references of
lower numbered rank are scanned before any references of higher
rank. The current MPS implementation supports four ranks:

1. ambiguous An ambiguous reference is a machine word which
may or may not be a reference. It must be treated as a refer-
ence by the MPS in that it preserves its referent if it’s reach-
able from the client process roots, but can’t be updated in
case it isn’t a reference, and so its referent can’t be moved.
Ambiguous references are used to implement conservative
garbage collection [7].

2. exact An exact reference is definitely a reference to an object
if it points into a pool. Depending on the pool, the referent
may be moved, and the reference may be updated.

3. final A final reference is just like an exact reference, except
that a message (sometimes called a “near death notice”) is
sent to the client process if the MPS finds no ambiguous or
exact references to the referent. This mechanism is used to
implement finalization [17, 14].

4. weak A weak reference is just like an exact reference, except
that it doesn’t preserve its referent even if it is reachable from
the client process roots. So, if no reachable ambiguous, ex-
act, or final references are found, the weak reference is sim-
ply nulled out. This mechanism is used to implement weak-
ness.

Note that the pool which owns the reference may implement ad-
ditional semantics. For example, when a weak reference is nulled
out, the AWL pool nulls out an associated strong reference in order
to support weak key hash tables.

Ranks are by no means a perfect abstraction. Parts of the Tracer
have to know quite a bit about the special semantics of ambiguous
references. The Tracer doesn’t take any special action for final and
weak references other than to scan them in the right order. It’s the
pools that implement the final and weak semantics. For example,
the MRG pool class is one which implements the sending of near
death notices to the client process.

The current implementation of the Tracer does not support seg-
ments with more than one rank, but is designed to be extended to
do so.

The current MPS ordering puts weak after final, and is equivalent
to Java’s “phantom references”. It would be easy to extend the
MPS with additional ranks, such as a weak-before-final (like Java’s
“weak references”).

6.5 Scanning and Fixing
In order to allow pools to co-operate during a trace the MPS

needs a protocol for discovering references. This protocol is the
most time critical part of the MPS, as it may involve every object
that it is managing. The MPS protocol is both abstract and highly
optimized.

Each pool class may implement a scan and fix method. These
are used to implement a generic scan and generic fix method which
dispatch to the pool’s method as necessary. The scan method maps
the generic fix method over the references in a segment. The fix
method preserves the referent of a reference (except when it is ap-
plied to weak references), moving it out of the white set for one or
more traces.



The most important optimization is part of the generic fix method
which is inlined into the scan methods. The generic fix method first
looks up the reference in the interesting set (see section 6.7), which
takes about three instructions. This eliminates almost all irrelevant
references, such as references to generations which aren’t being
collected, or references to objects not being managed by the MPS.

A second level optimization in the generic fix method checks to
see if the reference is to a segment managed by the MPS, and then
whether the segment is white for any of the traces for which the
reference is being fixed. This eliminates many more references.

Only if a reference passes these tests is the pool’s fix method
called.

A pool need not implement both scan and fix methods. A pool
which doesn’t contain references, but does contain garbage col-
lected objects, will have a “fix” method but no “scan” method. Note
that such objects are either black or white. A pool which contains
references involved in tracing, but not garbage collected objects,
will have a “scan” method but no “fix” method. Such a pool would
be a pool of roots, its objects either grey or black. A pool with
neither method is not involved in tracing, for example, a manually
managed pool storing strings.

6.6 Roots
Roots are objects declared to the MPS by the client process as

being a priori alive. The purpose of tracing is to discover objects
which aren’t referenced by transitive closure from the roots and
recycle the memory they occupy.

The MPS supports various kinds of roots. In particular, a thread
can be declared as a root, in which case its stack and registers are
scanned during a collection.

Roots have “grey” and “summary” fields just like segments, and
may be protected from reads and writes by the mutator using the
same rules. However, roots are never white for any trace, since
their purpose is to be alive.

6.7 Five phase collection
The Tracer runs each trace through five phases designed to al-

low pools to co-operate in the same trace even though they may
implement very different kinds of garbage collection.

6.7.1 Phase 1: Condemn
The set of objects we want to try to recycle, the condemned set

is identified, and a newly allocated trace is added to the white trace
set for the segments containing them.

At this stage, all segments containing any references (even the
white ones) are assumed to be grey for the trace, because we don’t
know whether they contain references to objects in the white set.
The roots are made grey for the trace, because they are a priori
alive. The mutator is also assumed to be grey for the trace, because
it has had access to all the grey data. Thus we start out with a valid
initial reference partition (see section 6.1).

We then use any existing reference partitions to reduce the num-
ber of grey segments for the trace as much as possible, using this
rule: Let � be the set of reference partitions whose white sets are
supersets of the new white set. Any node which is in the union of
the black sets of � cannot refer to any member of the new white
set, and so is also black with respect to it.

In practical terms, we work out the set of zones occupied by the
white set. We call this the interesting set. We can then make any
segment or root whose summary doesn’t intersect with the interest-
ing set black for the new trace. This is just a bitwise AND between
two machine words. A pool will usually arrange for a generation
to occupy a single zone, so this refinement step can eliminate a

large number of grey segments. This is how the MPS implements
remembered sets.

In a similar way, the MPS could also use the current status of
other traces to refine the new trace. Imagine a large slow trace
which is performing a copying collection of three generations. A
fast small trace could condemn the old space of just one of the
generations. Any object which is black for the large trace is also
black for the small trace. Such refinement is not implemented in
the MPS at present.

Note that these refinement steps could be applied at any time:
they are just refinements that preserve reference partitions. The
MPS currently only applies them during the condemn step.

6.7.2 Phase 2: Grey Mutator Tracing
This phase most resembles a write-barrier non-moving garbage

collector [2]. Any segment “blacker” than the mutator is write pro-
tected (see section 6.3).

At this point the mutator is grey for the trace. Note that, at any
stage, the mutator may be grey or black for different traces inde-
pendently. In addition, newly allocated objects are grey, because
they are being initialized by the mutator.

An object can be moved provided that it is white for any trace for
which the mutator is black, because the mutator can’t see references
to that object. [What about ambiguous references?]

During phases 2 and 4 the Tracer makes progress by scanning
segments which are grey for one or more traces (see section 6.5) in
order to make them black. Thus we make progress towards a final
reference partition (see section 6.1).

6.7.3 Phase 3: Flip
Flipping for a set of traces means turning the mutator black for

those traces. This may entail scanning the client process thread
registers and any unprotectable data. The mutator can’t be running
while this is happening, so the MPS stops all mutator threads.

This is also the point at which the MPS sets the limit fields of
any formatted allocation points to zero, so that unscannable half-
allocated objects are invalidated (see section 5.2).

6.7.4 Phase 4: Black Mutator Tracing
This phase most resembles a read-barrier possibly-moving garbage

collector [6]. Any segment “greyer” than the mutator is read pro-
tected (see section 6.3).

At this point the mutator is black for the trace. In addition, newly
allocated objects are black, and don’t need to be scanned.

6.7.5 Phase 5: Reclaim
When the grey set for a trace is empty after flip then it represents

a final reference partition. The Tracer looks for segments which are
white for the trace and calls the owning pool to reclaim the space
occupied by remaining white objects within.

It’s up to the pool to decide whether to return the reclaimed space
to its own free list, or to the arena.

7. FUTURE DIRECTIONS
The Memory Management Group at Harlequin was whittled away

to nothing as Harlequin slid into financial trouble. Parts of the sys-
tem are incomplete or have unclear status. A large amount of design
documentation exists, but it is fairly disorganized and incomplete.
We would like to organize all this information to make the MPS a
more useful resource.

The MPS was designed around many abstractions that make it
very adaptable, but it is not very well packaged and is unlikely to
work in new applications without some modification. We would



like to improve the MPS to make it easier to apply without modifi-
cation.

The MPS is currently commercially licensed to Global Graphics
Software Limited for use in the Harlequin RIP R

�
, and to Configura

Sverige AB for use in their Configura R
�

business system. We are
seeking further licensees and consultancy.

8. AVAILABILITY
The MPS project tree is available on the web at <http://

www.ravenbrook.com/project/mps/>. It includes all of
the non-confidential source code and design documentation. This
is a mirror of the tree in Ravenbrook’s configuration management
repository, so it will continue to reflect the development of the
MPS.

9. RELATED WORK
The MPS resembles the Customisable Memory Management (CMM)

framework for C++ [3] and shares some of its design goals. The
MPS was not designed for C++, but as a memory manager for dy-
namic language run-time systems. In fact, it was specifically de-
signed not to require C++.

The Memory Management Reference Bibliography contains all
the papers that we collected during the project, and can be found on
the web at <http://www.memorymanagement.org/bib/>.

10. CONCLUSIONS
During our stay at Harlequin we were often frustrated by confi-

dentiality. We were not able to reveal ideas and techniques which
we believed were both innovative and useful. The MPS contains
many such ideas – the results of hard work by many people (see
11). Now, at last, we can reveal almost all.

The MPS is a highly portable, robust, extensible, and flexible
system for memory management, based on very powerful abstrac-
tions. It contains many more useful concepts and abstractions not
covered in this paper.

We hope that the ideas, techniques, and code of the MPS will
be useful. We also hope that companies will license the MPS or
engage us to extend and develop it further.
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